Тепловой баланс котельного агрегата

Главная»Книги по котлам»Теплотехника - Н.Н. Лариков»Тепловой баланс котельного агрегата

Тепловой баланс котельного агрегата

Тепловой баланс котельного агрегата устанавливает равенство между поступающим в агрегат количеством теплоты и его расходом. На основании теплового баланса котельного агрегата определяют расход топлива и вычисляют коэффициент полезного действия, который является важнейшей характеристикой энергетической эффективности работы котла.

В котельном агрегате химически связанная энергия топлива в процессе горения преобразуется в физическую теплоту горючих продуктов сгорания. Эта теплота расходуется на выработку и перегрев пара или нагревание воды. Вследствие неизбежных потерь при передаче теплоты и преобразовании энергии вырабатываемый продукт (пар, вода и т.д.) воспринимает только часть теплоты. Другую часть составляют потери, которые зависят от эффективности организации процессов преобразования энергии (сжигания топлива) и передачи теплоты вырабатываемому продукту.

Тепловой баланс котельного агрегата заключается в установлении равенства между поступившим в агрегат количеством теплоты и суммой использованной теплоты и тепловых потерь. Тепловой баланс котельного агрегата составляется на 1 кг твердого или жидкого топлива или для 1 м3 газа. Уравнение, при котором тепловой баланс котельного агрегата для установившегося теплового состояния агрегата записывают в следующем виде:

Qр/р = Q1 + ∑Qn

или

Qp/p= Q1 + Q2 + Q3 + Q4 + Q5 + Q6 (19.3)

Где Qр/р - теплота, которой располагают; Q1 - использованная теплота; ∑Qn - общие потери; Q2 - потери теплоты с уходящими газами; Q3 - потери теплоты от химического недожога; Q4 - потери теплоты от механической неполноты сгорания; Q5 - потери теплоты в окружающую среду; Q6 - потери теплоты с физической теплотой шлаков.

Если каждое слагаемое правой части уравнения (19.3) разделить Qp/p и умножить на 100%, получим второй вид уравнения, при котором тепловой баланс котельного агрегата:

q1 + q2 + q3 + q4 + q5 + q6 = 100% (19.4)

В уравнении (19.4) величина q1 представляет собой коэффициент полезного действия установки "брутто". Он не учитывает затраты энергии на обслуживание котельной установки: привод дымососов, вентиляторов, питательных насосов и прочие расходы. Коэффициент полезного действия "нетто" меньше КПД "брутто", так как он учитывает затраты энергии на собственные нужды установки.

Левая приходная часть уравнения теплового баланса (19.3) является суммой следующих величин:

Qp/p = Qp/н + Qв.вн + Qпар+ Qфиз.т (19.5)

где QB.BH - теплота, вносимая в котлоагрегат с воздухом на 1 кг топлива. Эта теплота учитывается тогда, когда воздух нагревается вне котельного агрегата (например, в паровых или электрических калориферах, устанавливаемых до воздухоподогревателя); если воздух нагревается только в воздухоподогревателе, то эта теплота не учитывается, так как она возвращается в топку агрегата; Qпap - теплота, вносимая в топку с дутьевым (форсуночным) паром на 1 кг топлива; Qфиз.т - физическая теплота 1 кг или 1 м3 топлива.

Теплоту, вносимую с воздухом, рассчитывают по равенству

QВ.BH = β V0Срг.вз - Тх.вз)

где β - отношение количества воздуха на входе в воздухоподогреватель к теоретически необходимому; ср - средняя объемная изобарная теплоемкость воздуха; при температуре воздуха до 600 К можно считать ср = 1,33 кДж/(м3К); Тг.вз - температура нагретого воздуха, К; Тх.вз - температура холодного воздуха, принимаемая обычно равной 300 К.

Теплоту, вносимую с паром для распыления мазута (форсуночный пар), находят по формуле:

Qпар = Wф( iф - r )

где Wф - расход форсуночного пара, равный 0,3 - 0,4 кг/кг; iф - энтальпия форсуночного пара, кДж/кг; r - теплота парообразования, кДж/кг.

Физическая теплота 1 кг топлива:

Qфиз.т - стт - 273),

где ст - теплоемкость топлива, кДж/(кгК); Тт - температура топлива, К.

Значение величины Qфиз. т обычно незначительно и в расчетах учитывается редко. Исключением являются мазут и низкокалорийный горючий газ, для которых значение Qфиз.т существенно и должно обязательно учитываться.

Если предварительный подогрев воздуха и топлива отсутствует и пар для распыления топлива не используется, то Qp/р = Qр/н. Слагаемые потерь тепла в уравнении теплового баланса котельного агрегата подсчитывают на основании равенств, приводимых ниже.

1. Потерю теплоты с уходящими газами Q2(q2) определяют как разность между энтальпией газов на выходе из котельного агрегата и воздуха, поступающего в котельный агрегат (двоздухоподогревателя), т.е.

Формула 19-6

где Vr - объем продуктов сгорания 1 кг топлива, определяемый по формуле (18.46), м3/кг; cр.r, ср.в - средние объемные изобарные теплоемкости продуктов сгорания топлива и воздуха, определяемые как теплоемкости газовой смеси (§ 1.3) с помощью таблиц (см. прил. 1); Тух, Тх.вз - температуры уходящих газов и холодного воздуха; а - коэффициент, учитывающий потери от механического недожога топлива.

Котельные агрегаты и промышленные печи работают, как правило, под некоторым разрежением, которое создается дымососами и дымовой трубой. Вследствие этого через не плотности в ограждениях, а также через смотровые лючки и т.д. подсасывается из атмосферы некоторое количество воздуха, объем которого необходимо учитывать при расчете Iух.

Энтальпию всего поступающего в агрегат воздуха (с учетом присосов) определяют по коэффициенту избытка воздуха на выходе из установки αух = αт + ∆α.

Общий подсос воздуха в котельных установках не должен превышать ∆α = 0,2 ÷ 0,3.

Из всех потерь теплоты величина Q2 - самая значительная. Величина Q2 возрастает с увеличением коэффициента избытка воздуха, температуры уходящих газов, влажности твердого топлива и забалластированности негорючими газами газообразного топлива. Снижение присосов воздуха и улучшение качества горения приводят к некоторому уменьшению потери теплоты Q2. Основным определяющим фактором, влияющим на потерю теплоты уходящими газами, является их температура. Для снижения Тух увеличивают площадь теплоиспользующих поверхностей нагрева - воздухоподогревателей и экономайзеров.

Величина Тух влияет не только на КПД агрегата, но и на капитальные затраты, необходимые для установки воздухоподогревателей или экономайзеров. С уменьшением Тух возрастает КПД и снижаются расход топлива и затраты на него. Однако при этом возрастают площади теплоиспользующих поверхностей (при малом температурном напоре площадь поверхности теплообмена необходимо увеличивать; см. § 16.1), в результате чего повышаются стоимость установки и эксплуатационные расходы. Поэтому для вновь проектируемых котельных агрегатов или других теплопотребляющих установок значение Тух определяют из технико - экономического расчета, в котором учитывается влияние Tух не только на КПД, но и на величину капитальных затрат и эксплуатационных расходов.

Другой важный фактор, влияющий на выбор Тух, - содержание серы в топливе. При низкой температуре (меньше, чем температура точки росы дымовых газов) возможна конденсация водяных паров на трубах поверхностей нагрева. При взаимодействии с сернистым и серным ангидридами, которые присутствуют в продуктах сгорания, образуются сернистая и серная кислоты. В результате этого поверхности нагрева подвергаются интенсивной коррозии.

Современные котельные агрегаты и печи для обжига строительных материалов имеют Тух = 390 - 470 К. При сжигании газа и твердых топлив с небольшой влажностью Тух - 390 - 400 К, влажных углей

Тух = 410 - 420 К, мазута Тух = 440 - 460 К.

Влажность топлива и негорючие газообразные примеси являются газообразующим балластом, который увеличивает количество получающихся при горении топлива продуктов сгорания. При этом повышаются потери Q2.

При использовании формулы (19.6) следует иметь в виду, что объемы продуктов сгорания рассчитывают без учета механического недожога топлива. Фактическое количество продуктов сгорания с учетом механической неполноты горения будет меньше. Это обстоятельство учитывают, вводя в формулу (19.6) поправочный коэффициент a = 1 - р4/100.

2. Потеря теплоты от химического недожога Q3(q3). Газы на выходе из топки могут содержать продукты неполного горения топлива СО, Н2, СН4, теплота сгорания которых не использована в топочном объеме и далее по тракту котлоагрегата. Суммарная теплота сгорания этих газов и обусловливает химический недожог. Причинами появления химического недожога могут быть:

  • недостаток окислителя (α <; 1);
  • плохое перемешивание топлива с окислителем (α ≥ 1);
  • большой избыток воздуха;
  • малое или чрезмерно высокое удельное энерговыделение в топочной камере qv, кВт/м3.

Недостаток воздуха приводит в тому, что часть горючих элементов газообразных продуктов неполного горения топлива может вообще не сгорать из-за отсутствия окислителя.

Плохое перемешивание топлива с воздухом является причиной или местного недостатка кислорода в зоне горения, или, наоборот, большого его избытка. Большой избыток воздуха вызывает снижение температуры горения, что уменьшает скорости реакций горения и делает процесс сжигания неустойчивым.

Малое удельное тепловыделение в топке (qv = BQp/н/Vт, где В - расход топлива; VT - объем топки) является причиной сильного рас сеяния теплоты в топочном объеме и ведет к снижению температуры. Завышенные значения qv также вызывают появление химического недожога. Объясняется это тем, что для завершения реакции горения требуется определенное время, а при значительно завышенном значении qv время нахождения топливовоздушной смеси в топочном объеме (т.е. в зоне наиболее высоких температур) оказывается недостаточным и ведет к появлению в газообразных продуктах сгорания горючих составляющих. В топках современных котельных агрегатов допустимое значение qv достигает 170 - 350 кВт/м3 (см. § 19.2).

Для вновь проектируемых котельных агрегатов значения qv выбирают по нормативным данным в зависимости от вида сжигаемого топлива, способа сжигания и конструкции топочного устройства. При балансовых испытаниях эксплуатируемых котельных агрегатов величину Q3 рассчитывают по данным газового анализа.

При сжигании твердого или жидкого топлива величину Q3, кДж/кг, можно определить по формулеФормула 19-7(19.7)

3.Потеря теплоты от механической неполноты сгорания топлива Q4(g4). При горении твердого топлива остатки (зола, шлак) могут содержать некоторое количество несгоревших горючих веществ (в основном углерода). В результате химически связанная энергия топлива частично теряется.

Потеря теплоты от механической неполноты сгорания включает ее потери вследствие:

  • провала мелких частиц топлива через зазоры в колосниковой решетке Qпр (qпр);
  • удаление некоторой части недогоревшего топлива со шлаком и золой Qшл (qшл);
  • уноса мелких частиц топлива дымовыми газами Qун (qун)

Q4 - Qпp + Qун + Qшл

Потеря теплоты q принимает большие значения при факельном сжигании пылевидного топлива, а также при сжигании неспекающихся углей в слое на неподвижных или подвижных колосниковых решетках. Значение qун для слоевых топок зависит от видимого удельного энерговыделения (теплонапряжения) зеркала горения qR, кВт/м2, т.е. от количества выделяющейся тепловой энергии, отнесенного к 1 м2 горящего слоя топлива.

Допустимое значение qR BQр/н/R (В - расход топлива; R - площадь зеркала горения) зависит от вида сжигаемого твердого топлива, конструкции топки, коэффициента избытка воздуха и т.д. В слоевых топках современных котельных агрегатов величина qR имеет значения в пределах 800 - 1100 кВт/м2. При расчете котельных агрегатов величины qR, q4 = qnp + qшл + qун принимают по нормативным материалам. При балансовых испытаниях потерю теплоты от механического недожога рассчитывают по результатам лабораторного технического анализа сухих твердых остатков на содержание в них углерода. Обычно для топок с ручной загрузкой топлива q4 = 5 ÷ 10%, а для механических и полумеханических топок q4 = 1 ÷ 10%. При сжигании пылевидного топлива в факеле в котельных агрегатах средней и большой мощности q4 = 0,5 ÷ 5%.

4. Потеря теплоты в окружающую среду Q5 (q5) зависит от большого числа факторов и главным образом от размеров и конструкции котла и топки, теплопроводности материала и талщины стенок обмуровки, тепловой производительности котлоагрегата, температуры наружного слоя обмуровки и окружающего воздуха и т. д.

Потери теплоты в окружающую среду при номинальной производительности определяют по нормативным данным в зависимости от мощности котлоагрегата и наличия дополнительных поверхностей нагрева (экономайзера). Для паровых котлов производительностью до 2,78 кг/с пара q5 - 2 - 4%, до 16,7 кг/с - q5 - 1 - 2%, более 16,7 кг/с - q5 = 1 - 0,5%.

Потери теплоты в окружающую среду распределяются по различным газоходам котлоагрегата (топка, пароперегреватель, экономайзер и т.д.) пропорционально теплоте, отдаваемой газами в этих газоходах. Эти потери учитывают, вводя коэффициент сохранения теплоты φ = 1 q5/(q5 + ȵк.а) где ȵк.а - КПД котельного агрегата.

5. Потеря теплоты с физической теплотой удаляемых из топок золы и шлаков Q6(q6) незначительна, и ее следует учитывать только при слоевом и камерном сжигание многозольных видов топлива (типа бурых углей, сланцев), для которых она составляет 1 - 1,5%.

Потери теплоты с горячей золой и шлаком q6, %, рассчитывают по формуле

Формула 19-8

где ашл - доля золы топлива в шлаке; Сшл - теплоемкость шлака; Тшл - температура шлака.

При факельном сжигании пылевидного топлива ашл = 1 - аунун - доля золы топлива, уносимой из топки с газами).

Для слоевых топок асл шл = ашл + апрпр - доля золы топлива в "провале"). При сухом шлакоудалении температура шлака принимается Тш = 870 К.

При жидком шлакоудалении, которое наблюдается иногда при факельном сжигании пылевидного топлива Тшл = Тзол + 100 К (Тзол - температура золы в жидкоплавком состоянии). При слоевом сжигании горючих сланцев к зольности Aр вводится поправка на содержание углекислоты карбонатов, равная 0,3 (СО2), т.е. зольность принимается равной АР + 0,3 (СО2)р/к. Если удаляемый шлак находится в жидком состоянии, то значение величины q6 достигает 3%.

В печах и сушилках, применяемых в промышленности строительных материалов, помимо рассмотренных потерь теплоты приходится учитывать также потери на прогрев транспортных устройств (например, вагонеток), на которых материал подвергается тепловой обработке. Эти потери могут доходить до 4% и более.

Таким образом, КПД "брутто" может быть определен как

ȵк.а = g1 - 100 - ∑q потерь(19.9)

Теплоту, воспринятую вырабатываемым продуктом (пар, вода), обозначим Qк.a, кВт, тогда имеем:

для паровых котлов

Q1 = Qк.а =  D (in.n – iп.н)+ pD/100 ( i - iп.в) (19.10)

для водогрейных котлоагрегатов

Q1 = Qк.а = Мв ср.ввых – Твх) (19.11)

Где D - производительность котла, кг/с; iп.п - энтальпия перегретого пара (если котел вырабатывает насыщенный пар, то вместо iп.в следует поставить (iпн) кДж/кг; iп.в - энтальпия питательной воды, кДж/кг; р - количество воды, удаляемой из котлоагрегата с целью сохранения допустимого содержания солей в котловой воде (так называемая непрерывная продувка котла), %; i - энтальпия котловой воды, кДж/кг; Мв - расход воды через котлоагрегат,кг/с; ср.в - теплоемкость воды, кДж/(кгК); Tвых - температура горячей воды на выходе из котла; Твх - температура воды на входе в котел.

Расход топлива В, кг/с или м3/с, определяют по формуле

B = Qк.a/(Qр/н ȵк.a) (19.12)

Объем продуктов сгорания (см. § 18.5) определяют без учета потери от механического недожога. Поэтому дальнейший расчет котельного агрегата (теплообмен в топке, определение площади поверхностей нагрева в газоходах, воздухоподогревателя и экономайзера) осуществляется по расчетному количеству топлива Вр:

Формула 19-13(19.13)

При сжигании газа и мазута Вр = В.

Вас может заинтересовать